Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Programmable optical tweezer arrays of molecules are an emerging platform for quantum simulation and quantum information science. For these applications, the reduction and mitigation of errors remain major challenges. In this work, we leverage the rich internal structure of molecules to mitigate two types of errors - internal state preparation and qubit leakage errors. First, we demonstrate robust measurement-enhanced tweezer preparation at a record fidelity using site-resolved error detection followed by tweezer movement. Second, using a new hyperfine qubit encoding well-suited for use as a quantum memory, we demonstrate site-resolved detection of qubit leakage errors (erasures) induced by blackbody radiation. This constitutes the first demonstration of erasure conversion in molecules, a capability that has found recent interest in quantum error correction. Our work opens the door to new possibilities with molecular tweezer arrays: Measurement-enhanced preparation opens access to mesoscopic defect-free molecular arrays that are important for quantum simulation of interacting many-body systems; erasure conversion in molecular arrays lays the technical ground- work for mid-circuit detection, an important capability for explorations in quantum information processing.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Ultracold molecules have been proposed as a candidate platform for quantum science and precision measurement because of their rich internal structures and interactions. Direct laser-cooling promises to be a rapid and efficient way to bring molecules to ultracold temperatures. However, for trapped molecules, laser-cooling to the quantum motional ground state remains an outstanding challenge. A technique capable of reaching the motional ground state is Raman sideband cooling, first demonstrated in trapped ions and atoms. Here we demonstrate Raman sideband cooling of CaF molecules trapped in an optical tweezer array. Our protocol does not rely on high magnetic fields and preserves the purity of molecular internal states. We measure a high ground-state fraction and achieve low motional entropy per particle. The low temperatures we obtain could enable longer coherence times and higher-fidelity molecular qubit gates, desirable for quantum information processing and quantum simulation. With further improvements, Raman sideband cooling will also provide a route to quantum degeneracy of large molecular samples, which could be extendable to polyatomic molecular species.more » « less
-
Entanglement is crucial to many quantum applications, including quantum information processing, quantum simulation, and quantum-enhanced sensing. Because of their rich internal structure and interactions, molecules have been proposed as a promising platform for quantum science. Deterministic entanglement of individually controlled molecules has nevertheless been a long-standing experimental challenge. We demonstrate on-demand entanglement of individually prepared molecules. Using the electric dipolar interaction between pairs of molecules prepared by using a reconfigurable optical tweezer array, we deterministically created Bell pairs of molecules. Our results demonstrate the key building blocks needed for quantum applications and may advance quantum-enhanced fundamental physics tests that use trapped molecules.more » « less
-
We report on a novel bichromatic fluorescent imaging scheme for background-free detection of single CaF molecules trapped in an optical tweezer array. By collecting fluorescence on one optical transition while using another for laser cooling, we achieve an imaging fidelity of 97.7(2)% and a nondestructive detection fidelity of 95.5(6)%. Notably, these fidelities are achieved with a modest photon budget, suggesting that the method could be extended to more complex laser-coolable molecules with less favorable optical cycling properties. We also report on a framework and new methods to characterize various loss mechanisms that occur generally during fluorescent detection of trapped molecules, including two-photon decay and admixtures of higher excited states that are induced by the trapping light. In particular, we develop a novel method to dispersively measure transition matrix elements between electronically excited states. The method could also be used to measure arbitrarily small Franck-Condon factors between electronically excited states, which could significantly aid in ongoing efforts to laser cool complex polyatomic molecules.more » « less
-
Abstract We propose a new scalable platform for quantum computing (QC)—an array of optically trapped symmetric-top molecules (STMs) of the alkaline earth monomethoxide (MOCH3) family. Individual STMs form qubits, and the system is readily scalable to 100–1000 qubits. STM qubits have desirable features for QC compared to atoms and diatomic molecules. The additional rotational degree of freedom about the symmetric-top axis gives rise to closely spaced opposite parityK-doublets that allow full alignment at low electric fields, and the hyperfine structure naturally provides magnetically insensitive states with switchable electric dipole moments. These features lead to much reduced requirements for electric field control, provide minimal sensitivity to environmental perturbations, and allow for 2-qubit interactions that can be switched on at will. We examine in detail the internal structure of STMs relevant to our proposed platform, taking into account the full effective molecular Hamiltonian including hyperfine interactions, and identify useable STM qubit states. We then examine the effects of the electric dipolar interaction in STMs, which not only guide the design of high-fidelity gates, but also elucidate the nature of dipolar exchange in STMs. Under realistic experimental parameters, we estimate that the proposed QC platform could yield gate errors at the 10−3level, approaching that required for fault-tolerant QC.more » « less
-
Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole–assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.more » « less
An official website of the United States government
